
Cooperating Expert Systems for the Next Generation of
Real-time Monitoring Applications

U. M. Schwuttke, J. R. Veregge, and A. G. Quan
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

818-354-1414
ums@puente.jpl. nasa,gov

ABSTRACT
A distributed monitoring and diagnosis system has been
developed and successfully applied to real-time moni-
toring of interplanetary spacecraft at NASA’s Jet Pro-
pulsion Laboratory. This system uses a combination of
conventional processing and artificial intelligence.
Knowledge-based diagnosis modules are embedded
within an automated monitoring system that detects on-
board spacecraft anomalies. The diagnostic modules are
specialized to respond to anomalies in a single domain of
expertise and to cooperate with one another when nec-
essary to solve complex problems that extend beyond an
individual domain. Details of the distributed architec-
ture, real-time diagnosis, and system performance are
described in the paper. A brief summary of lessons
learned in transferring research prototypes into opera-
tional environments is also reported,

1.0 INTRODUCTION

A combination of practical and innovative computer sci-
- ence has been applied to the MARVEL system [Schwuttke et

al. 1992] for automated monitoring and diagnosis of space-
craft telemetry. This system has been shown to achieve
robust and coherent behavior for complex, real-time diag-
nostic modules embedded in a conventional (algorithmic)
monitoring system.

The system architecture has been designed to facilitate
concurrent and cooperative processing by multiple diagnos-
tic expert systems in a hierarchical organization. The expert
systems adhere to concepts of data-driven reasoning, con-

Thc research described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology under a contract with the
National Aeronautics mrd Space Administration. The authors wish to ac-
knowledge support from JPL’s Voyager and Galileo Projects, Multi mission
Operations Support Office and Director’s Discretionary Fund.

strained but complete nonoverlapplng ctomalns, metatmowl-
edge of global consequences of anomalous data, hierarchical
reporting of problems that extend beyond a single domain,
and shared responsibility for problems that overlap domains.

These features combine to enable efficient diagnosis of
complex system failures in real-time environments with high
data volumes and moderate failure rates, as indicated by de-
tailed performance measurements from two different appli-
cations of the system. One of these applications has been in
continuous operational use since it was first deployed in 1989
for the Voyager spacecraft encounter with Neptune. This ap-
plication remained under incremental development for a
period of three years subsequent to the original delivery and
has been under routine maintenance since 1991. The current
application for the Galileo mission is a second generation
system that has been on-line for only one year and is still
under active development. The second generation system
builds on experience gained with this technology to achieve
an order of magnitude increase in performance.

2.0 COOPERATING EXPERT SYSTEMS
EMBEDDED IN A DISTRIBUTED
ARCHITECTURE

Recently, the need for mechanisms of cooperation that
are sufficiently robust for real-world monitoring applications
has become a research driver. Systems such as GRATE*
[Jennings and Mamdani, 1992] contribute toward a clearer
and more easily implementable interaction of agents during
collaborative problem solving. GRATE* addresses a prob-
lem domain in which events occur unpredictably and deci-
sions may be based on incomplete or imprecise data. Toward
this end, the notion of joint responsibility is proposed as an
alternative to the more conventional notion of agents acting
in self-interest. The potential for large communication over-
head is a possible disadvantage of the GRATE* system,
particularly for applications with time critical analysis.

. .

DISTRIBUTED MARVEL ARCHITECTURE SUBSYSTEM PROCESS ARCHITECTURE

Figure 1. The distributed architecture on the left can currently be configured to run on one to four
UNIX workstations, with the most common operational configuration involving two worksta-
tions (for compatibility with analyst responsibilities). The hybrid subsystem processes on the left
are composed of conventional and knowledge processes, as shown in the figure on the right.
Knowledge processes are used only when a reasoning capability is explicitly required.

The protocol and architecture described in this paper subsystem monitors, and the system-level diagnostic agent
builds on the notion of ioint res~onsibilitv and uses modular for handling failures that manifest themselves across multiple
problem decompositio~ and da;a-driven ;easoning in order
to minimize communication between agents. The various
modules in the distributed architecture of Figure 1 are allo-
cated among a configuration of UNIX workstations. Inter-
process co~nmunication is based on a central message routing
scheme. The data management module receives data from a
source (in the case of our current application, the data is
spacecraft telemetry received from JJ?L’s ground data sys-
tem) and allocates it to the appropriate subsystem monitor
based on identification of data type. (Our system is parti-
tioned according to the structure of the spacecraft, with one
subsystem, monitor for every spacecraft subsystem. Space-
craft subsystems include command and data, attitude and
articulation control, propulsion, telecommunications, ther-
mal, and power. A mapping between partitioning in the
monitoring system and the natural partitioning of the system
being monitored is desirable for real-time diagnostic
architectures.) Each of the subsystem monitors provides al-
gorithmic functions such as validation of telemetry, detection
of anomalies, trend analysis and automatic reporting. These
functions, while not in themselves of interest in AI or com-
puter science research, are vital components of a real-world
diagnostic system. They are implemented here in conven-
tional C code for performance reasons. In addition, each
subsystem process can provide diagnosis of failures based on
anomalous-data and recommendation of corrective actions.
The latter two functions are provided by knowledge-based
modules that are embedded within each of the individual sub-
system monitors. The remaining modules include the graph-
ical user interface and display processes for each of the

subsystems -(and therefore cannot be completely analyzed-by
any one subsystem alone). Detailed reasoning examples
from the actual application are presented elsewhere [Schwut-
tke and Quan 1993].

3.0 CHARACTERISTICS OF THE
EXPERT SYSTEMS

The expert systems are embedded.
Rule-based diagnostic modules are embedded in effi-

cient algorithmic code. The algorithmic code performs all
functions that do not explicitly require reasoning capability,
so that the use of the less efficient reasoning tnodules is lim-
ited to those functions for which it is essential.

Diagnosis is data-driven.
Forward-chaining demons are used to represent domain

knowledge. Reasoning is activated by the appearance of data
that requires diagnosis. The initial determination that diag-
nosis is required is made by algorithmic monitoring code,
which detects potential anomalies algorithmically and passes
the anomalous data to an appropriate diagnostician. In the
absence of anomalous data within its domain, a diagnostic
system is idle.

The domain of individual experts is constrained.
An agent is responsible for a small, clearly partitionable

.

domain of expertise. Partitioning is governed by the natural
decomposition of the system being diagnosed. This helps
overcome disadvantages associated with rule-based systems
for which, typically, implementation can be intractable, exe-
cution is nondeterministic and relatively slow, and verifica-
tion can be difficult. Small, modular knowledge-bases enable
developers to handle more easily definable subproblems.
Smaller knowledge bases execute more efficiently, because
less time is spent in search. Finally, smaller knowledge-bases
are easier to verify.

The domain of the individual diagnostic modules is
nonoverlupping.

A particular domain of expertise and the associated rules
for performing diagnosis are assigned only to one diagnostic
module in order to avoid redundant reasoning.

Diagnostic modules carry individual responsibility for
problems entirely within their domain.

Each diagnostician has sufficient knowledge to be fully
accountable for diagnoses within its area and has no knowl-
edge of other domains. This requires that accountability for
locally detectable failures must be local.

Failure domains may not map directly to agent domains.
Diagnosis requires more than one agent when the symp-

toms manifest themselves in more than one domain.

Metaknowledge enables agents to instigate cooperation for
diagnosis beyond their domain.

Agents have metaknowledge to identify symptoms of
failures that could possibly extend beyond their domain.
Metaknowledge is contained in a set of rules in each
knowledge-base, and is associated with the occurrence of
events whose analysis may require the cooperation of other
agents.

- Agents report all problems tt’zat extend beyond their
domain.

Metaknowledge enables an agent to determine which
symptoms from its domain may portend problems beyond its

. domain. The metaknowledge also includes the specific
agent(s) to which the information should be forwarded.

A hierarchy of agents provides coordination.
An expert forwards all known information pertaining to

failures beyond its domain to another agent at the next higher
level in the hierarchy. The underlying approach on forward-
ed messages is conservative; it is up to the agent receiving the
information to determine whether a fault requiring a diag-
nostic message and an alarm has occurred or whether the
anomalous data has some other explanation. This agent may
also receive messages from other lower-level agents. Experts
at the higher level are implemented according to the same
principles as lower-level experts; thus reasoning at the higher
levels of the hierarchy is also data driven. The agents at the
higher level are activated by messages from lower-level
agents, just as the lowest level agents were activated by mes-

sages of symptoms detected by algorithmic code. Messages
are directed with metaknow]edge to the relevant agent(s) in
order to complete the final analysis of the anomalous data
and provide diagnosis of any associated failures.

Agents share responsibility for diagnosis of problems that
overlap domains.

Joint responsibility exists in that the lower-level agents
are responsible for reporting appropriate symptoms upward
in the hierarchy and the higher-level agent(s) are responsible
for correct] y determining whether failures have occurred and
providing appropriate diagnosis. This differs from the “self
interest” model of communication [Durfee 1988] and is
similar to the joint responsibility model [Jennings and Mam-
dani, 1992] in which agents must temper their self-interest
with consideration to a group. These models have parallels
in social organizations, with the first being more representa-
tive of an unstructured society and the second paralleling the
actions of individuals who are dedicated (perhaps for reasons
of self-interest) to fulfilling a successful role in a structured
organization such as a business or a corporation. In the latter
case, independent agents work together with appropriate (and
hierarchical) division of responsibility towards fulfilling a
common goal. Real-world applications can be sufficiently
complex that only this second type of organization may en-
able timely, robust, and coherent behavior.

4.0 EXPERIMENTAL RESULTS

The distributed architecture described in this paper has
been applied to two generations of real-time monitoring
systems. The Galileo system, currently under development,
does not yet include modules for diagnosis. The Voyager
system, completed in 1991, contains four diagnostic expert
systems (developed using a commercial shell) in a two-level
hierarchy.

Conventional monitoring modules for four of the space-
craft subsystems were completed: the flight data subsystem,
the computer command subsystem, the attitude and articula-
tion control subsystem, and the telecom subsystem. Three of
our expert systems are embedded in conventional modules
that perform data accesshnanipulation and monitoring in ad-
dition to providing graphical user interfaces and other sub-
system specific automation. The system-level diagnostician
is not embedded within another module. As a result, it can-
not easily be compared to the other expert systems in a
discussion of real-time performance and it will not be further
discussed here.

The remaining expert systems have the following
characteristics. The computer command subsystem (CCS)
expert contains on the order of 150 rules, focuses on a rela-
tively broad domain analysis, and is invoked very frequently
(for almost every parameter). The attitude and articulation
control subsystem (AACS) expert contains approximately
100 rules, and focuses on a more narrow domain of analysis.
It is invoked infrequently. The telecom expert system con-

.

.

700

650

600

550

150

100

50

0

Figure

m
Baseline

2. Performance

Better Simpler No GUI
Pile 110 GUI

results for each of the subsystem modules.

No KBS

Spacecraft S

m

m

n

J

ubsystems

Telecom

AACS

Ccs

FDS

tains on the order of twentv-five rules and is invoked contin- complex GUIS, and perform significant file I/O. AACS has
uously (for every param~ter). The flight data subsystem
(FDS) module does not contain an expert system.

Experimental evaluation on a network of workstations
(Sun Microsystems Spare LXS running Solaris 2.2) involved a
series of tests to determine the maximum number of data pa-
rameters that could be processed per module per second (a
subsystem module includes both the conventional and
knowledge-based components as shown in Figure 1). The
primary purpose of this evaluation was to learn about the per-
formance of the expert systems and apply our insights to
future expert system implementation on the Galileo
application. This evaluation was not motivated by a need to
improve the performance of the Voyager system; as current
data rates are considerably slower than during the planetary
encounters and are easily handled by the existing software
configuration,

The results are shown in Figure 2. The baseline perfor-
mance was below expectation, with FDS, CCS, AACS and
Telecom processing 26,3,24, and 428 parameters per second
respectively, for a total of 481 parameters per second pro-
cessed by the entire system. Performance profiling revealed
that file 1/0 and the graphical user interfaces (GUIS) were
primary performance bottlenecks.

With regard to these bottlenecks, the four modules can
be categorized as follows. FDS and CDS have moderately

the ~lost complex G’UI and pe~orms very little file 1/0, be-
cause the input files read by this subsystem are sufficiently
small that they are read entirely into memory upon system
initialization. Telecom has a simple GUI and performs no file
1/0.

Optimizing file 1/0 where possible improved perfor-
mance to 53, 16, 81, and 428 parameters per second. (This is
the only improvement discussed in this section that was car-
ried forward to the operational system.) Simplifying the
graphical user interface by eliminating real-time scrolling
windows (known to be computationally inefficient in MOTIF
user interfaces: considered desirable bv end-users and thus,
included in the FIX, CCS, and AACS modules of the opera-
tional system) further improved performance to 53, 35, 172,
and 428 parameters per second. Eliminating the graphicaI
user interface entirely resulted in performance increases to
67, 35, 646, and 570 parameters per second, Finally, elimi-
nating the expert systems yielded performance of 67, 273,
668, and 570 parameters per second.

These results made it possible to gain a number of new
insights with regard to our system. The biggest surprise was
the high performance of the telecom module. The combina-
tion of the small knowledge base and the simple user inter-
face enables processing of 428 parameters per second.
Elimination of both the GUI and the expert system only re-
sults in a further performance improvement on the order of

.

.
25 percent, indicating that no substantial penalty is associated
with the significant enhancement to functionality provided
by these two components of the module. The next generation
system will benefit from this result, in that frequently per-
formed analysis that requires the use of an expert system will
be implemented with a number of small, cooperating mod-
ules rather than one larger module. Further performance
improvement could likely be gained with a more efficient
expert system shell. This will be investigated although we do
not currently expect more than a several-fold improvement.

The AACS expert system is larger by a factor of four,
and slower by an order of magnitude. This can be explained
by both a larger search space and greater depth in each
search. Performance could likely be improved with a faster
reasoning shell and by modularization of the knowledge
base. However, the diagnostic component of this module is
invoked sufficiently rarely (less than once per hour) that this
is not an important bottleneck as there would be insufficient
opportunity to benefit from this improvement. In the case of
this type of module, it would be preferable to simplify the
GUI, which continues to impose considerable resource
overhead.

The CCS expert system is large and is invoked regularly
as part of ongoing trend analysis in that subsystem module.
Elimination of the expert system results in an additional or-
der of magnitude increase in performance, providing further
indication that a large knowledge base may be inappropriate
for frequently invoked real-time diagnosis. The CCS knowl-
edge base is characterized by breadth rather than depth. As a
result, it would both beneficial (and straightforward) to re-
duce it to three or more component modules without impos-
ing significant overhead from resulting interprocess
communication. (If this were implemented, the CCS module
would still be 1/0 bound, as it reads from a number of very
large files.)

As a result of these insights, the Galileo implementation
- takes a more efficient approach to file I/O. It also tends to be

more efficient in its graphical user interface, in that it does
not include some of the higher-overhead user interface
widgets. Such changes impact functionality, requiring a cer-

- tain amount of negotiation with end-users (who are typically
willing to compromise in favor of performance). In addition,
the Galileo system makes greater use of the distributed ar-
chitecture with more than one module per subsystem. With
these changes we are currently able to process a three-fold
increase in telemetry parameters in the baseline configuration.
In the future, the addition of small, modular expert systems
for diagnosis is planned. These will be implemented to have
the minimum impact on performance.

5.0 OTHER LESSONS LEARNED IN THE
TRANSITION BETWEEN RESEARCH
AND OPERATIONS

The development of MARVEL has involved a constant
balance between user needs, research goals, and (less conve-

niently) retrofit to an existing operations system that was
never intended for automation. Under such circumstances,
the temptation to put research goals ahead of all other con-
siderations is common; however, these goals must be bal-
anced against user needs in order to maintain the customer
support that is needed to assure long-term survival. In many
cases, sufficient communication with customers can actually
help focus research on real needs. The following lessons
have been valuable in making a successful transition to
operations.

Existing tools enhance development progress.
Reasonably priced commercial tools and public domain

tools were used in MARVEL with great success, for expert
system development and for conventional functions such as
graphical user interfaces, trend plotting, and network
communication. This turned out to be an advantage from
both the implementation and maintenance perspectives, al-
lowing cost-effective software development to concentrate
on unique task needs for which there were no tools. Recent-
ly, some in-house software has even begun to emerge that
could be effectively reused for some of these unique needs.

Knowledge-based methods should be used sparingly in
real-time systenls.

For diagnosis functions expert systems provide better
implementational paradigms than more efficient convention-
al approaches. However, expert systems usually employ
interpreters to perform inferencing on the knowledge base
rather than compiling the knowledge base into native code.
This tends to compromise performance and can pose diffi-
culties in applications where the fastest possible response
time is a critical factor in meeting real-time constraints [Bahr
and Barachini 1990].

MARVEL achieves adequate response time by placing
as much of the computing burden as possible into conven-
tional algorithmic functions written in C. For example, C
processes handle the initial tasks of allocating telemetry to a
monitoring module and detecting anomalies. After prelimi-
nary tests are done and a probability of anomaly occurrence
has been established, the subsystem monitor invokes
knowledge-based processing for diagnosis of the anomaly
and for recommendation of corrective action. This technique
contributes to an overall response time that is sufficient for
real-time monitoring.

There is more than one way to benefit from a diagnostic
system.

Initial emphasis using MARVEL for productivity en-
hancement temporarily curtailed the development of diag-
nostic expert systems; it was perceived that diagnostic
systems did not improve efficiency of operations. This per-
ception stemmed from two observations: First, anomaly
analysis was only required in the presence of spacecraft
anomalies. Second, these did not occur with sufficient fre-
quency to warrant an automated approach, particularly since
human confirmation of the expert system analysis would still
be required.

.,*

However, mandated workforce reductions subsequent to
the Neptune encounter caused renewed interest in expert
systems, Now the goal is no longer workforce reduction, but
the preservation of mission expertise. Many current analysts
are new to the mission and, for the most part, do not have the
experience of the preyious staff. The new personnel will have
fewer opportunities to gain such experience: although the
Voyager interstellar mission is scheduled to continue until
approximately 2018, spacecraft activity is at a low level. As
a result, there are far fewer opportunities for mission opera-
tions personnel to learn about the spacecraft and its operation
than during the prime mission, There is concern that analysts
with the experience to handle future anomalies will be less
readily available, or that they will have retired. As a result,
the expert systems are being expanded to provide informa-
tion that is based on the expertise of former analysts. How-
ever, this is much more difficult than it would have been
several years ago, as many of the experts are no longer
available.

Successful automation emphasizes depth over breadth.
Emphasis on depth over breadth in automation applies

equally to conventional components of a system and to ex-
pert systems. Attempt to establish viability by simuhaneous-
ly demonstrating functionality in a the many diverse areas
relevant to a large application can result in the inability to
achieve focus in most of these areas. In MARVEL, depth has
been more difficult to achieve in the expert systems than in
the conventional components of the system. This has result-
ed from two factors. The first of these was the need to strive
for a system that would enable workforce reductions. The
second reason is that it was more difficult to elicit user re-
quirements and domain knowledge for expert systems than
for conventional functions, perhaps because the analysts
were better able to express knowledge and communicate in-
formation regarding more conventional or algorithmically
oriented tasks.

.6.0 CONCLUSIONS

The MARVEL distributed architecture demonstrates the
successful implementation of multiple cooperating agents in
a complex real-time diagnostic system. We have designed an

- architecture that facilitates concurrent and cooperative pro-
cessing by multiple agents in a hierarchical organization.
These agents adhere to the concepts of data-driven embed-
ded diagnosis, constrained but complete nonoverlapping
domains, metaknowledge of global consequences of anoma-
lous data, hierarchical reporting of problems that extend
beyond an agent’s domain, and shared responsibility for
problems that overlap domains.

The MARVEL architecture is simple and well suited for
real-time telemetry analysis. Conventional processing is
used wherever possible in order to facilitate performance.
The knowledge-based agents are embedded within the algo-
rithmic code, and are invoked only when necessary for
diagnostic reasoning. Distribution of telemetry monitoring

and diagnostic processes across workstations provides sig-
nificant improvement in performance. These qualities allow
for efficient real-time diagnosis of anomalies occurring in a
complex application.

Maxitnum modularization of frequently invoked rea-
soning modules will enable significant performance im-
provements in the next generation system.

7.0 REFERENCES

Bahr, E.; and Barachini, F. 1990. “Parallel PAMELA on
PRE.’ ‘ In Parallel Processing of Engineering Applications,
ed, R. A. Adey, 209-219. New York: Springer-Verlag.

Cohen, P. R.; Hart, D. M.; and Howe, A. E. 1990.
“Addressing Real-time Constraints in the Design of Auton-
omous Agents. ” COINS Technical Report 90-06. University
of Massachusetts at Amherst.

Durfee, E. H. 1988. “Cooperation through Communication
in a Distributed Problem Solving Network. ” In Distributed
Artificial Intelligence, Vol. 2. Pitman Publishing, 1988.

Jennings, N. R.; and Mamdani, E. H. 1992. “Using Joint Re-
sponsibility to Coordinate Collaborative Problem Solving in
Dynamic Environments.” In Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence, San Jose,
California. 269-275.

Hayes-Roth, B. 1990. “Architectural Foundations for Real-
time Performance. ” Artificial Intelligence Journal, 26:
251-232.

Horvitz, E. J.; Cooper, G. F.; and Heckerman, D. E. 1989.
“Reflection and Action Under Scarce Resources: Theoreti-
cal Principles and Empirical Study. ” In Proceedings of the
Eleventh International Joint Conference on Artificial Intelli-
gence, 1121-1127.

Schwuttke, U. M.; Quan, A. G.; Angelino, R.; Childs, C.
L.; Veregge, J. R,; Yeung, R.; and Rlvera, M. B. 1992.
“MARVEL: A Distributed Real-time Monitoring and Anal-
ysis Application.” In innovative Applications of Artificial
Intelligence 4, MIT Press.

Schwuttke, U. M.; and Quan, A. G. 1993. “Enhancing Per-
formance of Cooperating Agents in Real-time Diagnostic
Systems.” In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, Chambery,
France, 332-337.

